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Abstract - In this paper, we investigate an advanced monitoring
system for a neonatal intensive care unit. The system intelligently
detects abnormal neonatal cerebral Doppler ultrasound signals
by means of principal component analysis and a non-normalised
compensatory neuro-fuzzy rule based algorithm. Two hundred
and ninety Doppler ultrasound signals were recorded from the
anterior cerebral arteries of 40 normal full-term babies and 14
mature babies with intracranial pathology. The features of the
normal and abnormal groups were extracted from the maximum
velocity waveforms using a principal component method. The
non-normalised compensatory neuro-fuzzy rule based algorithm
yielded the highest predictive accuracy of 76.21%. These results
show that the proposed algorithm is superior to others, and could
potentially be used to build an intensive neonatal care unit
system for the intelligent detection of abnormal neonatal cerebral
haemodynamics.

Keywords - Neonatal cerebral arteries, Doppler ultrasound, blood
flow velocity, principal component analysis, decision-making
systems, compensatory fuzzy neural networks, pattern classification.

I. INTRODUCTION

Designing intelligent diagnostic systems has been an
important component of research efforts in biomedical and
clinical engineering for the last three decades [1]. These
systems have been designed to aid medical staff (doctors and
nurses), to increase their ability and reliability during decision
making in diagnosis. However, for intensive care units
(ICUs), not much research has been conducted. Among
specialist ICUs, a neonatal intensive care unit is one of the
busiest departments that requires more careful consideration.
Recent studies dealing with the use of intelligent systems in
ICUs are very encouraging and show that such systems have
become a necessity, with staff demonstrating willingness and
interest in their use [2].

Abnormal cerebral haemodynamics is a condition that
causes brain death and severe disability. Doppler ultrasound
has been used to detect abnormal cerebral haemodynamics in
both full-term and pre-term infants with a variety of
pathological conditions [3,4] since this is a non-invasive and
objective diagnostic method [5].

Changes in the Doppler frequency envelope signal have
been quantified by measuring changes in Pourcelot’s
resistance index (PI) [6]. This index is defined as (S-D)/S,

where S and D are the maximum and minimum values of the
Doppler shift frequency envelope during each cardiac cycle.
PI is very simple to calculate, but is not suitable for detecting
abnormalities if there are not gross changes in the Doppler
waveform shape.

Principal component analysis (PCA) has been shown to be
a very efficient feature extraction technique for detecting
changes in Doppler waveforms compared with PI [3,5,7,8].

Individual use of PI and PCA has been demonstrated to be
ineffective for the reliable diagnosis and interpretation of
abnormal cerebral haemodynamics [3,5,7]. It has therefore
become necessary to find more accurate models for detecting
abnormal changes rather than using PI and PCA individually.

Pattern recognition methods such as Generalised Linear
Function (GLF), Bayes’ Model and Artificial Neural
Networks (ANNs) have been investigated to detect such
changes [7-10].

Seker and Evans have recently proposed a compensatory
neuro-fuzzy rule based algorithm for the detection of
abnormal changes in neonatal cerebral arteries, and showed it
to be superior to the previously applied methods such as
ANN, GLF and Bayes’ method [11].

It has also been demonstrated that a fuzzy system without
normalisation converges much faster than a fuzzy system with
normalisation [12]. Seker et al. examined this idea to further
improve the capability of the compensatory fuzzy algorithm
for function approximation in general [13]. They showed that
the non-normalised version of the algorithm yielded not only
lower errors, but also used less memory and CPU time.

In this paper, we examine a non-normalised compensatory
neuro-fuzzy rule based algorithm to detect abnormal changes
in velocity waveforms from the anterior cerebral arteries of
newborn babies, and its possible use in a neonatal intensive
care unit.

II. NEONATAL CEREBRAL HAEMODYNAMICS DETECTION
SYSTEM

The block diagram in Fig. 1 illustrates the system for
detecting neonatal cerebral haemodynamics.
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A Doppler unit is used to measure blood velocity changes
based on the concept of the Doppler shift signal, and a signal-
processing unit is used to analyse the measured signals. In this
part of the system, Fast Fourier Transformation (FFT) is used
to extract Doppler ultrasound sonograms. In the feature
extraction unit, the maximum frequency envelope is extracted
from each sonogram, and an ensemble average waveform
derived. The ensemble average waveforms are then subjected
to principal component analysis (PCA) to reduce their
dimensionality, so that each waveform can be represented by a
pair of coordinates which can then be used in the
classification of each waveform as either normal or abnormal.
Further details of this process can be found in [3,5].
Subsequently, the coefficients are sent to the decision making
part of the system, where the proposed compensatory neuro-
fuzzy model, the parameters of which have previously been
tuned, will decide on whether the waveform is normal or
otherwise.

DOPPLER ULTRASOUND UNIT

4L

SIGNAL PROCESSING UNIT

J L

FEATURE EXTRACTION UNIT

4L

Non-normalized Compensatory
Neural Network based Diagnosis

Fig.1. Block diagram of the system

IIT. A COMPENSATORY NEURO-FUZZY SYSTEM

A fuzzy logic system is a model with linguistic IF-THEN
rules [14]. Such a fuzzy logic system of r-rules and an n-
input-one-output can be defined as

IF x;is M, and ... x; is M;, and ... x, is M,, THEN y is O

where M;. and O" are input and output fuzzy sets of a rule r
(r=1,2,...R), respectively; x=(x,,...,x;,...,X,,) 1S an n-dimensional
input vector; and y is the output of the system.

Since the final output of a fuzzy system is a function of all
rules, a compensatory neuro-fuzzy system (CNFS) can be
defined as:
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The non-normalised CNFS may be defined as:
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The parameters of both the input (M;) and output (O")
fuzzy sets of the CNFS are adjusted using the back
propagation technique [15] to design an optimal CNFS. We
refer readers to [11,13] for further information about the
adjustment of the parameters.

If appropriate initial parameters are chosen, the back
propagation algorithm converges faster. Therefore, in this
paper, we use the fuzzy c-means (FCM) clustering method
[16,17], which is a well-known and widely used technique, to
initialise the CNFS model. We refer readers to [11,13] for
further information about the initialisation.

IV. METHODS

Fifty-four newborn babies were studied. Among them, there
were 40 normal full-term babies and 14 mature babies with
intracranial pathology. Doppler signals were recorded from
both anterior cerebral arteries of each baby on one or more
occasions, and 290 test signals were recorded. Values of the
maximum frequency envelope of the Doppler signal at 12.5
msec intervals for each signal were extracted. Fig.2 shows
examples of sonograms of Doppler signals recorded from a
healthy baby and from one with severe birth asphyxia. In this
case, the waveform from the ill baby, regarded as an abnormal
waveform, is very much less pulsatile than that from the
normal baby. However, it is not always an easy task to
distinguish a normal waveform from an abnormal one as
suggested by Fig. 2.

Principal component analysis was carried out on an
ensemble average of each series of beats. The first 350 msec
of each waveform were taken and normalised to its mean
height. Then, the first two coefficients of the principal
components were derived from the 290 test waveforms, which
were used as a feature set for all the algorithms studied.



Fig. 2. Sonogram of the Doppler signals recorded from (A) a normal baby
and (B) a baby with severe birth asphyxia.

V. RESULTS

As reported in [11], the normalised version of a
compensatory neuro-fuzzy rule based algorithm significantly
outperformed ANN, Bayes’ Model and GLF. In this study,
there was a 5-rule fuzzy system which had 35 updated
parameters.

Normalised and non-normalised CNFS with 7 fuzzy rules
and initial compensatory degree of 0.25 were trained for 1000
iterations. The data set was divided into a training and test
sets, each comprising of 145 exemplars. The results are listed
in Table 1. These results show that the proposed algorithm
yielded a higher predictive accuracy. Moreover, the
experiment showed that the non-normalised version of the
CNFS used less memory and CPU time as reported in [13].

VI. CONCLUSIONS

We have shown that, for the detection of abnormal neonatal
cerebral Doppler ultrasound waveforms modelled by PCA, the
non-normalised CNFS is a very efficient hybrid method. It
incorporates the techniques of fuzzy logic, back propagation
learning and FCM and, compared with previously used
methods, it yields not only higher predictive accuracy but also
higher speed and lower memory usage. It can be concluded
that this model could be used to build a future intelligent
system in a neonatal intensive care unit to serve all medical
personnel in the unit by increasing their flexibility and
enhancing their ability to make reliable diagnostic decisions.
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TABLE 1
COMPARISON OF THE ALGORITHMS IN TERMS OF PREDICTIVE
ACCURACY (%)

Training Test Total
Data Set Data Set
Normalised CNFS 68.97 65.86 67.41
Non-normalised CNFS 78.97 73.47 76.21
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